CNC Machining

Take Advantage of the Flexibility of CNC Machine Capabilities

If you’re looking for the best machined part services, then computer numerical controlled machining (CNC) is the best process for you. Manufacturing any product you need has never been easier with modern CNC machine capabilities. Today’s latest models make it possible to produce more quickly and affordably while providing a highly accurate product. 

CNC machining also offers a wide range of potential features to customers. At Glenn Metalcraft Inc., we specialize in the best CNC machining equipment, operators, tools, and standards to provide high-quality services to our customers. Here are some reasons we love CNC machining and why you should take advantage of these revolutionary products. And if you want to learn more about our manufacturing processes and what we can do for your machining needs, you can reach out to us today. 

CNC Machine Capabilities

A CNC machine lathe

The CNC in CNC machining refers to “computer numerical control.” This phrase means that, rather than a human directly handling the cutting tools and operations, a computer or CNC program controls the machining. As a result, the computer can control every aspect of the machining process, from replacing cutting tools to welding. 

CNC lathes can cut far more precisely than humans can. As a result, they can also handle more dangerous tasks without concern for team member safety. CNC manufacturing processes are only becoming more efficient as the software continues to improve each year and enhance the quality of manufactured parts.

There are many benefits to using CNC machine capabilities for your manufacturing. Here are just a few:

Tasks are accomplished at high speed. 

Computers remain focused on the task at hand, need fewer breaks, and make fewer mistakes. All these factors mean that the machinery will perform tasks more quickly. So, you can expect faster completion times and increased productivity.


With humans, there is often room left for human error. After all, people make mistakes. 

But computer-aided design (CAD) means that accuracy is far higher. In fact, it can almost perfectly replicate a template to the accuracy of 1/1,000th of a unit. So you can trust you’re getting what you want from the software and its robotic tools. 

Lower maintenance. 

When you hire companies like Glenn Metalcraft Inc., you may not notice that CNC devices need less maintenance compared to other manufacturing processes. But you will see the difference reflected in fast turnaround times and an affordable rate. 

Large projects accomplished safely. 

Computer-aided design (CAD) software is not only accurate and fast, but the tools themselves can handle large pieces of metal and complex tasks. Fabrication of a large part or specific tasks may pose a danger to staff, but a powerful machine can accomplish the task at hand safely with great accuracy. 

Not sure if CNC machining is right for the part you need to be created? Talk with the engineers at Glenn Metalcraft Inc. and ask what we recommend for this process. 

Multi-Axis Power

A CNC machine at work

There are various types of CNC machines. Each machine can accomplish tasks differently. For example, CNC turning vs. milling is two ways of handling materials to produce a part. The difference is that turning requires the material to move, whereas milling means that the machine’s parts move around the material. 

But in addition to techniques used, you also have options for how many axes a machine has. With more axes come greater CNC machine capabilities. That’s because each axis allows for more movements, allowing the robotic mechanisms to move precisely to accomplish the function required. 

People who are familiar with CNC machine capabilities are most familiar with 3 and 5-axis units. After the 3-axis and 4-axis designs, the 5-axis showcased a significant improvement in machine competency. But people didn’t stop at the 5-axis, and units continue to improve to this day. 

The Benefits of 6-Axis CNC Machining Tools

A CNC machine working

As technology improves, 5-axis units have become the standard. But the 6-axis design improved upon the 5-axis device’s configuration and pushed the limit of CNC machine capabilities. The 6-axis tool allows for much faster cutting times and greater efficiency.

With the release of 6-axis tools, Glenn Metalcraft Inc. chose to invest in this technology. The 6-axis shows time and time again that it produces the best results for our customers. With faster turnaround times and reliable accuracy, we confidently ship our products to our customers, knowing that they will love the results.

If you’re considering what CNC machine capabilities can do for you, check out the axes available from a provider. The more axes, the greater the efficiency and functionality applied to your product. 

Robots in Machining Services

CNC machine capabilities

To be clear, robotics and computer numerical control services are not the same. While there is much overlap in the benefits, there are differences between the two that one is better for certain customers than the other.

However, within the CNC process, a robotic material handler carries out the actions that the computer dictates. For example, Glenn Metalcraft Inc. uses the R-200IB. This machine has a high capacity load with the latest software on the market to guarantee a great product. 

Although our R-200IB is located at our Glenn Metalcraft Inc. Fort Worth, Dallas, Princeton, Minnesota locations, we can ship products throughout the country. You won’t believe what these robotic tools can do until you see the results with your own eyes!

Conclusion — Get Professional CNC Machining

Two workers using a CNC machine

With great accuracy, efficiency, and affordability, there are countless benefits to using CNC machining processes. The power behind these tools and software delivers high-quality materials to industries around the world. 

If you’re looking for professional CNC machining, Glenn Metalcraft Inc. is here to help. Our relationships with customers are as solid as the metals we work with, forged on quality service for the highest quality parts. We ensure that our services are a perfect fit for each product. 

Contact us today to speak with our skilled engineers about your manufacturing needs, and we’ll get started on shipping the perfect CNC machining for your business.


6 Benefits of Robotic Welding

Automated welding offers several advantages to businesses, including reduced costs and higher return on investment. This article discusses the many benefits of robotic welding and how it can help your business. 

What are the Benefits of Robotic Welding?

1. Increased Productivity

A welding robot welding in an automotive space

Compared to manual welding, robotic welding systems can achieve faster results. 

It can improve productivity as the robotic systems get the job done quickly. You don’t have to wait hours when you have robots working—the cycle time is lesser, which means you can get more things done. 

Whether you have acquired new or used robots, the output is still the same as long as the purchased robotic welding systems are functional and in good working order or when you hire the right company to help you with fulfillment. Most importantly, robot arms don’t get tired. There’s no need for breaks.

You can have welding robots work as many hours as possible if you have several projects that need to get done. No one has to take vacations or sick leaves. If you’re flexible or have some people who can supervise, your robotic welding systems can work 24/7. 

2. Reduced Mistakes

A blue welding robot welding a large metal piece

With manual welding, it’s possible to make mistakes. 

Robotic systems, on the other hand, are designed to work effectively and efficiently. So long as the machines are well maintained and in good working condition, they make fewer to no mistakes. 

The weld quality will be exceptional with industrial robots. You don’t have to worry about manual welders’ common mistakes, such as choosing the wrong wires or the size gun or using the incorrect voltage. These mistakes are reduced significantly, which in return benefits your company. 

3. Consistency

A yellow welding robot working on an assembly line

Welding processes are used in several industries such as construction and automotive. 

Before the process can begin, a welding method is chosen. The base metals and equipment are prepped, measured, and positioned. Also, the welder has to be certified, prepared, and trained. They need to adhere to the standard procedures to ensure consistency and also avoid contamination. 

When the worker fails to do proper shielding, the result could be weak or porous. You can significantly reduce or completely avoid the problems associated with manual welding when you automate the process. 

With robotic arms helping, you know that the output is always consistent. You won’t have to worry about other issues or contamination. Robotic automation ensures high-quality output and consistency all of the time. 

4. Safety and Cost Savings

A technician programming a robotic welding machine

When it comes to welding, safety is the topmost priority. 

Welding injuries can occur when the workers don’t take the proper precautions, such as wearing safety glasses, safety boots, welding helmets, and hearing protection. When the welder isn’t careful, they could lose their hearing or eyesight and suffer general burns. 

It’s essential to keep all the laborers safe, or the company may pay for the medical bills or other damages if the laborer isn’t insured. You can avoid all these when with the robotic welding process. Robot arms don’t get hurt, and you won’t have to pay for insurance when you have people working for you. Over time, it can add to massive savings on your part. 

Keep in mind that running a business means reducing all the expenses wherever possible to maximize your profit. A higher return of investment is entirely possible with automated welding.

The cost to acquire robots may be higher, but it’s cost-effective in the long run. So long as you know how to maintain your robots properly, they should work efficiently for many years, helping you generate more revenue for your business. 

5. Robots Can Start Immediately

Robotic enigineers working on programming a welding robot

Whether you’re a startup or an established business, it’s essential to have a good hiring process in place to ensure that you have the right people in your team. 

Welding requires the right skill and concentration — you can’t hire anyone for this. They need to have the training and experience for them to work efficiently and effectively. Also, you will, of course, need to pay for labor. 

You can save time when you have robots working for you. There’s no need to spend weeks or months looking for more people to help you finish projects if you’re an established company. 

No more labor costs too, which is one of the benefits of robotic welding. Most importantly, you don’t have to wait for them to get started. Robots can begin working on your project at any time—no need for training or hiring process. Robots are already designed to do their job the best way possible. 

6. High-Quality Output

CNC robotic mig welding steel parts


When the workers are not highly trained or experienced, they may make mistakes or even injure themselves. Major defects can include hot and cold cracking, blowholes, penetration defects, or iron contamination. 

Before starting the process, welders need to do some preparation, take extra precautions, store and handle metal the right way, choose the right gun and electrodes, etc. If they fail, the output may not be that exceptional. 

With automated welding, the output will be of top-notch quality if you have the best robots in the market. In return, you get repeat clients.

Invest in Robotic Welding

robotic welding machine

Because of increased productivity and improved quality, you can complete more projects in less time. In return, your business can generate more revenue. 

If you want to drive more revenue, we suggest investing in robotic welding. And that’s where Glenn Metalcraft comes in. 

We can provide both manual and robotic welding services to our clients. Our team can handle small to large volumes of projects. We have been helping businesses for several years and still counting. 

One of our top priorities is to provide the best welding solutions to businesses. Get in touch with us today to request an estimate for your next robotic welding project.

Metal Spinning

GMI Delivers Superior Metal Spinning

Founded in 1947, Glenn Metalcraft Inc. (GMI) provides high-quality expertise and services to countless businesses. GMI became one of the first U.S. companies to invest in innovative CNC spin technology to present clients with superior metal spinning services. It remains committed to a high standard of excellence and customer satisfaction.

By prioritizing the relationship between Glenn Metalcraft’s employees and customers, GMI delivers quality customer service and skilled craftsmanship to ensure it meets every customer’s needs. In addition to superior metal spinning services, GMI’s roster of metal industry experts allows the firm to recommend the best materials for new products, review engineering designs, and create cost-reduction solutions.

Your success is Glenn Metalcraft Inc.’s success. But don’t just take our word for it ‒ contact us today and learn more about what makes GMI a superior metal spinning company.

Superior Metal Spinning

Metal Industry lathe machine work

Metal spinning, also called spin forming, spinning, or metal turning is the process of rotating a tube or disc of metal at a high speed and applying localized pressure to shape the metal, which is similar to the method used in clay pottery. The process, which creates an axially symmetrical product, can be done by hand or performed by a machine.

Artisans and commercial companies use metal spinning to produce high-quality metal parts for various industries, including home goods, science and technology, and automobiles.

The metal spinning process is cost-effective and produces very little material waste. 

Any form of ductile metal can be used in metal spinning, such as aluminum, stainless steel, carbon steel, copper, brass, Hastelloy, Inconel, and titanium. The diameter for metal spun through this process can range between one inch to eight feet.

How Does It Work?

Examples of spinning tools litter history. The Ancient Egyptians used manual spinning techniques to create everyday tools or build architectural masterpieces. The process shifted in the Middle Ages to metalwork and would eventually become the machine-operated precision heavy gauge metal spinning it is today.

To begin the spinning process with a CNC machine, a pre-cut sheet of metal also called a blank, is clamped between the mandrel and tailstock of the spinning machine. A primary drive rotates the mandrel and tailstock as a spinning roller performs a series of passes over the block to change its shape.

A skilled hand spinner can also manually spin and shape a piece of metal by applying a roller by hand.

Advantages of Using GMI

A worker operating a metal spinning machine

By using Glenn Metalcraft Inc., you can expect to receive the highest-quality metal spun parts at great prices. GMI’s employees are focused on forging strong relationships with customers to provide the best service possible. Some advantages to working with Glenn Metalcraft Inc. include: 

  • its efficient work center equipped with a mechanical workhorse and a CNC lathe 
  • access to GMI’s metal spinning experts 
  • cost-effective solutions for the OEM industry
  • incredible customer service from the moment you create an order

GMI’s Work Center and CNC Lathe

GMI has increased capacity by adding the 48 ROBOT – R 2000IB 165F to its workspace, which can handle large, heavy parts throughout the shop. This mechanical workhorse speeds up production time by allowing GMI employees to focus on quickly and efficiently creating your product with the company’s CNC metal spinning machine.

GMI’s CNC metal spinning machine is programmed to inspect parts for quality control to ensure every component created meets the highest standard. The machine is capable of in-cell deburring, has flexible pack-out options, and is equipped with two vacuum circuits and two pressure circuits. 

This machine can perform different processes without needing additional tools so that clients can set up with GMI under one purchase order. The CNC machine creates parts with maximum accuracy, flexibility, and efficiency in a short amount of time, ensuring GMI’s customers receive the best product as quickly as possible.

GMI is always looking for new ways to increase efficiency and introduce innovative technology to continue to meet customer’s evolving needs.

Metal Spinning Experts

Superior metal spinning on a CNC machine

A machine is only as good as the person operating it. At Glenn Metalcraft Inc., our craftsmen work with our equipment within tight tolerances to meet each customer’s specifications and standards. Our craftsmen are also skilled in robotic welding, punching, automated machining, assembly, and waterjet cutting. 

GMI’s employees have mastered the latest innovations and technology in the metal spinning industry to provide customers with the best and most reliable parts. GMI is part of the Elemet Group of metalworking companies, which provides access to GMI’s sister companies, Minnesota Industrial Coatings, and Elemet Manufacturing, to offer additional finishing and fabricating services to interested clients.

Steel-Forged Customer Relationships

Close up of handshake in the office

As a local, family-owned business, GMI understands the importance of the relationship between company and customer. You can count on communicating with staff members who see your success as their personal triumph and who will work hard to ensure they meet every one of your needs.

Because Glenn Metalcraft Inc. wants to grow in the right direction, GMI ensures every type of work accepted fits into the company’s overarching beliefs and goals. GMI knows how critical it is to choose the business that will fit the needs of your company.

GMI has locations in Fort Worth, Texas, and Princeton, Minnesota, with customers located nationwide. GMI is a business-to-business (B2B) company and is excited to work with your company.

Get Started With GMI Today

Sheet metal forming on a CNC machine

Let GMI’s expert craftsmen help you succeed with superior metal spinning services, access to industry-leading metalwork expertise, and innovative technology. GMI prioritizes consistency, excellence, and accuracy for every job.

GMI made providing innovative solutions to customers’ metalwork needs its mission. The company is constantly adding capabilities, automation, and capacity. It is committed to giving customers an environment of respect where they are allowed to grow and develop. The firm strives for success which translates into a desire to see its customers succeed, ensuring beneficial and lasting relationships.

Glenn Metalcraft not only serves as a leader in its industry because of the innovative and cutting-edge technology and equipment used by highly trained professionals. But also because GMI wants to provide the best experience and products for its customers.

Get started with Glenn Metalcraft and get an estimate today.

Laser Cutting


Laser cutting has replaced some of the most conventional cutting methods in the fabrication process. A combination of high-powered laser beams, partial mirrors, and gases combine to form modern laser cutting machines. Recent developments have led to laser cutters using CNC technology to cut through steel or piping many inches thick with a smooth cut line and fine detail.

How Laser Cutting Works

precision laser cutting machine

Laser cutting directs the output of a high-powered laser via computer toward the material to be cut. The material then either melts, burns, vaporizes, or is blown away by a gas jet, leaving the edge with a smooth, high-quality surface finish. Industrial laser cutters can cut flat-sheet material as well as structural and piping materials.

At Glenn Metalcraft, we’ve been using our expertise and experience manufacturing a precision laser-cut part that meets our customer’s exact specifications for over 35 years. Need our expertise?

Advantages of Laser Cutting

laser cutting services

Laser cutting is versatile and can implement cutting in ways that other machines can’t. Materials that are difficult to cut using other methods make excellent candidates for laser cutting. The advantages of laser cutting include:

  • High Accuracy. Accuracy of +/-0.1 mm allows achieving high precision cuts.
  • Low lead times. No need to change the setup for cutting a lot of different shapes within the same material thickness.
  • Lower power consumption. Cutting speed is faster than traditional mechanical cutting methods resulting in less power consumption.
  • Less waste. High processing speed results in a minimal heat-affected zone, ensuring low rates of workpiece distortion.
  • Ability to handle complex jobs. Capable of producing custom shapes and complex geometries.
  • Consistent part quality. Since laser cutting machines are CNC-controlled, they can repeatedly and consistently produce complex and intricate parts to high tolerances.
  • Less damage. Reduced risk of tool marks and surface scratches due to lack of physical contact.
  • No need for finishing. High-quality cuts and edges don’t require cleaning, treating, or finishing.
  • Suitable for a variety of metals. Laser cutting works on a wide array of metals like Steel, Titanium, Brass, Copper, Nickel, Tungsten, Nickel, Aluminum, etc.

Applications for Laser Cutting

laser cutting metal with sparks

Lasers are a vital part of the automation process across the automotive, electronics, energy, heavy equipment, medical device manufacturing, and tool & die industries. The use of laser cutting in the manufacturing process can significantly reduce overtime on projects and increase productivity.


As vehicles become more advanced, smaller parts need to be precisely cut. The smooth, precise cuts created by a laser allow for less material waste, and the power required for laser cutting is low. The automotive industry has a significant need for exact replicas of parts of different shapes and sizes. Laser cutting cuts metals to form body pieces of the vehicle, electronic components, and interior covers and buttons.

Laser cutting is ideal for cutting complex formed parts. These are usually vital parts that lend support to the structure of the vehicles. Commonly, these pieces create the engine frame or the instrument panels.


The trend toward miniaturization, more efficient use of space and large volume production are highly valued characteristics in the electronics industry. Laser cutting technology can produce the precision and high-speed production required for switching cabinet housing, plug-in units, and the housing of electrical devices.


Changes in building use are increasing the demand for custom solutions for unique purpose buildings, which require flexible machine concepts from manufacturers. Many products used in making air conditioning technology and energy technology are created from sheet metal such as housings, vents, and ductwork.

Heavy Equipment

From large part processing and thick plate cutting to exact and small, intricate parts, laser cutting can be used in many applications to maximize efficiency. Laser cutting provides a cost-effective alternative to building expensive dies to customize pieces.

Laser cutting is an ideal choice for a full range of agricultural, construction, and heavy equipment industry needs. Structural frames, exhaust pipes, driver’s cabs, mounts, blades, and brackets in agricultural and construction machinery are made from sheet metal.

Medical Device Manufacturing

Laser-cut stainless steel is the basis for medical devices and instruments that improve the procedures used with patients. Scalpels, scissors, valve framers, vascular clips, bone reamers, flexible shafts, and hones are all manufactured laser-cut precision parts.

Tool & Die

The laser’s ability to cut different depths of metal makes it ideal for cutting an extremely accurate die for stamping pieces and molds that will endure the repetitive nature of die-cutting. Laser cutting makes replicating the die a quick and precise operation.

Laser cutting can make injection molds with the same accuracy that it does with dies. Laser cutting simplifies mold making and makes reproducing the mold precisely a much less time-consuming and costly endeavor.

Laser Cutting Experts

machinist operating laser cutting machine

CNC laser technology allows Glenn Metalcraft to manufacture parts quickly and cost-effectively while maintaining the highest quality standards.

At Glenn Metalcraft, our client relationships are as sturdy as the metal we machine. We forged each one with quality service for the highest quality parts. We take pride in delivering your project ready for use, on time, and within budget.

We are a part of the Elemet Group, offering innovative, one-stop metal fabrication, machining, and industrial coating solutions since 1947. We eliminate the need for external sourcing, which saves you time and money. Our sister companies are:

Ready to talk about partnering with us in your product manufacturing project? Get in Touch.


Subtractive Manufacturing


Subtractive manufacturing can be performed manually by a machinist. More commonly it’s a highly complex process used by a CNC machine.

It is a decades-old practice with a demonstrated history of effectiveness in the prototyping process and manufacturing products. The goal for your project will determine if it is the correct process for your needs. 

 Subtractive manufacturing is like the process an artist uses to create a sculpture. The machinist or CNC programmer, like the artist, uses specialized tools to carve metal materials into the desired shape.   

The different techniques used by the craftsman or artist create the specific details requested by the client.

If you want to understand subtractive manufacturing further and whether it aligns with your needs, consider Glenn Metalcraft Inc. They are an industry leader with a customer service focus.

What is subtractive manufacturing?

CNC machine cutting example of subtractive manufacturing

Subtractive manufacturing is aptly named since it involves removing or subtracting materials to produce the end product. One method of implementing subtractive manufacturing utilizes a computer numerically controlled or CNC machine

The process begins with a rough slab or bar of material. Then, a machinist removes the excess until it reaches the final shape of the prototype or product being manufactured. You can imagine it like a sculpture. Your piece begins as a rough block but takes on a more complex shape through detailed carving. 

Subtractive manufacturing can be further broken down by the machines and manufacturing technologies used. 

Conventional machining uses three-axis cutting tools so that the block does not need to be manually flipped or turned. Conventional lathes, milling machines, and drill presses produce basic geometric designs.

Unconventional machining is ideal for working with brittle materials or producing more intricate and complex shapes. It uses a variety of processes to remove excess materials. This method can use a combination of mechanical, electric, thermal, or chemical methods to fashion the block into the desired shape.

What is the difference between additive and subtractive manufacturing?

CNC machine drilling example of subtractive manufacturing

The difference between additive and subtractive manufacturing is stated within their names. One method adds material; the other method subtracts material. 

Additive manufacturing involves adding material to create the desired part. Adding layers to the workpiece forms the designated object. 

Like a CNC machine, a 3D printer is programmed to create a 3d printed piece. The printer then builds up the shape from raw materials. Specific industries that utilize additive manufacturing include the medical and dental device industries. 

Subtractive manufacturing involves removing material from solid blocks to fashion the desired shape. Manufacturers can use it with many different metals, such as aluminum and brass. A machinist or CNC machine system will remove metal using drilling, milling, or turning. The process will clear away segment by segment until the result is your product or prototype. 

However, the two processes are not mutually exclusive. On the contrary, many manufacturers use both together to take advantage of each process’s unique advantages.

Advantages of subtractive manufacturing

CNC Machine Turning as an example of subtractive manufacturing

There are many advantages of subtractive manufacturing, so it has remained a popular production method after decades of use. 

Subtractive manufacturing usually results in much smoother surface finishes than the “stepped” surface, which results from using an additive manufacturing process. 

Why does the type of finish matter? If your product needs to slide, you will want the smooth finish that subtractive manufacturing provides. 

The texture matters if you use your prototype in your sales and marketing process. Your customers will be more likely to believe that your product is the right fit if it has the right feel. 

Computer numerically controlled systems are commonly utilized in the subtractive manufacturing process. First, the CNC software reads the design provided and instructs the CNC machine on creating the product. It then prescribes how to cut, drill, and channel your components. 

This level of automation means that larger-scale production can be handled with greater ease and less human involvement. 

The tools used in subtractive manufacturing are exact and can create intricate or tight geometric designs. These types of complex shapes may be otherwise difficult to mold or cast.

Subtractive manufacturing techniques

CNC Machine Abrading example of subtractive manufacturing

Many subtractive manufacturing techniques are used. However, the main approaches can be divided into three broad categories. Those are: 

  • Cutting, 
  • Machining, and
  • Abrading.

Cutting involves using saws, blades, or other such tools to remove excess material. 

Machining is when tools move around or across the raw material to shape it. CNC machining involves turning, milling, or drilling the item. 

Finally, abrading is when the raw material is sanded down or polished using an abrasive substance. 

The type of process used is dependent on the type of material used.  A manufacturer needs a deep knowledge of metals to apply those processes to create the right design effectively. 

Subtractive manufacturing examples

CNC machine being programmed by a manManufacturers can apply subtractive manufacturing in various industries, including medical, dental, automotive, aerospace, and agriculture.

From gears in an airplane engine to garden tools, subtractive manufacturing can produce many products. This manufacturing technique can even make jewelry! Glenn Metalcraft Inc. uses its decades of industry experience to create items that might otherwise seem impossible!

Subtractive manufacturing has earned its place as an effective fabrication process in most machine shops. Its long history has improved by adding automation and software to allow many additional applications. Moreover, its unique properties mean it can create tight geometric shapes with a smooth and polished finish. 

Hybrid Manufacturing, the Future of Subtractive Manufacturing

For a long time, subtractive manufacturing has been the go-to for detail and finish work because it’s simply the best method. But today, additive manufacturing gives us new shapes and structures possibilities.

The best of both worlds – additive and subtractive techniques combined on the same machine. This is what we call hybrid manufacturing. With this method, you can create a new part from scratch with 3D printing and then use CNC methods to finish it. 

With this technology, you can switch between methods as you please. For instance, start by 3D printing a layer of material, then use subtractive machining on it, and add another layer afterward. 

Why Glenn Metalcrafts Inc.?

Glenn Metalcrafts Inc. specializes in assisting the OEM industry in creating prototypes and manufacturing the products that build your success. Our company brings to the table decades of experience, advanced equipment, and the advice of metal industry experts. We manufacture products others would not even consider. 

Glenn Metalcrafts Inc. builds solid relationships and grows alongside its customers. It is selective in its clientele to achieve the right fit. Reach out today to find out how Glenn Metalcrafts Inc. can make your manufacturing idea a reality.


Laser Cutting

Laser Cutting Metals vs. Plasma Cutting Metals

Laser cutting and plasma cutting machines can save you time and money. Both share similar qualities, but there are unique features that differentiate the two. Before choosing which machine best fits your needs, you should understand the ins and outs of each. We hope to help you find the right fit.

Our relationships with customers are just as solid as the metals we work with, forged on quality service for the highest quality parts. Glenn Metalcraft is an extension of each customer. We want to grow in the right direction, so we are careful about the type of work we accept and strive to achieve a good fit above all else.

Have you ever harnessed sunlight to create a laser beam?

If you have ever used a magnifying glass to direct sunlight into a concentrated beam, you created a laser! Channeling direct sunlight through a lens produces a focused column of light. This column is also known as a laser beam.

When you think of lasers, you might be reminded of sci-fi movies or laser light shows. The lasers you envision are similar to those that laser cutting machines use. A concentrated beam is directed through the machine and onto the material you desire to cut. This beam is controlled by a complex network of parts, all controlled by a computer.

The computer controls the machine and directs the laser beam with fantastic accuracy. Laser cutting metals is a process well known for clean cuts and tight tolerances.


Plasma cutting machines work differently.

Plasma cutting machines create a stream of electricity flowing through gas and force it through a small orifice using compressed air. That stream jumps from an electrode in the nozzle to the conductive material being cut. It is why plasma cutting is limited to only conductive materials.

Plasma cutting machines offer powerful cutting capabilities but provide less accuracy than laser cutting machines. Unlike laser cutting machines, many plasma cutting machines are handheld. They are an affordable and effective way to cut through metal sheeting easily.


Differences in precision: Laser vs. Plasma cutting metals

As you might imagine, laser cutting is the more precise option. 

A laser can cut a metal sheet with extreme accuracy because the cut width is so thin. Most lasers are only one-thousandths of an inch thick. This thin cut width results in an ideal cut.

Plasma cutting machines are mighty but do not meet the same level of accuracy as lasers. The propelled spray that plasma cutting machines send out to cut through materials is one-hundredths of an inch thick. This is close to ten times less accurate than laser cutting.

Cut quality comparison: Laser cut metals vs. plasma cut metals

Plasma cutting requires more “clean up” time.

Plasma cutting often leave jagged edges and imperfections on parts. This means that you may revisit the piece after cutting to clean up the cut edges.

When watching a laser cutting machine and a plasma cutting machine go head-to-head, the differences in cut quality and speed are apparent. 

Material restrictions for laser cutting machines:

Laser cutting machines create crisp edges, but they’re picky eaters.

Unlike plasma, laser cutting machines can only work with materials generally less than ½” thick. Any larger and you may need a very big, extremely specialized laser. Laser cutting metals are limited to clean, rust-free, non-mirrored metal materials.

Laser cutting machines cut a variety of metal materials. 

These range from typical cardstock paper to thick acrylic boards. When considering how well it can cut metals, the ideal thickness is ¼” steel or aluminum sheeting. The cardinal rule is that these surfaces need to be unblemished and unpainted for the laser cutter to work correctly.

Material restrictions for plasma cutting machines:

Plasma cutting machines require a conductive material to get the job done.

The favorites of these machines are steel and aluminum. One perk to plasma cutting is that they do not require clean cuts of the material and will work appropriately, trimming through rust and blemishes on the surface.

Thicker materials that require simple cuts are ideal candidates for the plasma cutting machine. Plasma cutting is possible at thicknesses up to 6 inches. The maximum thickness possible for each plasma cutter varies the machine’s power and setup. Plasma cutters can be handheld or table-mounted systems.

Here to address your questions about laser metal cutting and plasma metal cutting.

Our relationships with customers are as solid as the metals we work with, forged on quality service for the highest quality parts. Glenn Metalcraft is an extension of each customer. We want to grow in the right direction, so we are careful about the type of work we accept and strive to achieve a good fit above all else.

Laser Cutting

An Intro To Plasma Cutting Metals

There are four primary states of matter: liquid, solid, gas, and plasma. Plasma is gas that has energy added to it, causing molecules to speed up and collide with greater force into each other. This electrified, ionized gas creates the power behind plasma cutting metals and technologies.

The technology for plasma cutting metals is here to make fabrication and welding more manageable and precise than ever before.

At GMI, we have been offering our customers cutting-edge technology for fabrication and metalworking since 1947. Please contact us today to discuss how our team of engineers and craftsmen can save you time and money with our superior service.

This article will look into plasma cutting metals, a widely used process in the manufacturing industry. Let’s dig into…

The World Of Plasma Cutting Metals

Plasma cutting is a fabrication process used to cut through conductive metals like stainless steel and aluminum. We find the technology in automotive repair, manufacturing, and industrial construction. But how exactly does it work?

The process begins with a gas. The type of gas you utilize depends on the material cut, as different gasses can produce different results. Compressed air, nitrogen, oxygen, and argon-hydrogen mixtures are a few examples, but manufacturers most often use compressed air.

Next, the gas is injected into the plasma chamber, where it is electrified. This process breaks the molecules of gas into atoms. Atoms are disassociated from their electrons. The process is also known as ionization. The fast-moving ionized gas produces large amounts of heat as the electrons are displaced from the atoms and then reabsorbed by other particles.

The ionized gas is funneled towards the very narrow opening, the focused nozzle, of the cutter itself. As the pressurized, ionized gas rushes past the electrode, it is sparked by an electric arc, making the plasma electrically conductive. The nozzle focuses and constricts the plasma, giving it a higher density and velocity.

The plasma exiting the cutter’s tip and the workpiece itself create an electrical circuit. The cutter and workpiece have been grounded by an earth terminal, allowing for a completed circuit to form. The process makes it safe to use for the craftsperson.

Finally, the workpiece needs to be a conductive metal for this electrical plasma to connect and melt the metal. The plasma reaches temperatures up to 30,000 degrees Celcius, which is hot enough to initiate the melting process. It can cut through metals between .5mm and 180mm.


What Metals Are Conductive?

Plasma cutting is only useful for conductive metals. That means that the material must conduct electricity, as plasma is electrical, ionized gas.

Metals that are conductive and typically cut by plasma technology include:

  • Stainless steel
  • Steel
  • Aluminum
  • Copper
  • Brass
  • Titanium
  • Iron

Thermal Separation

There are three main thermal separation methods used in metal fabrication and welding. Lasers are potent but often cost-prohibitive. . The plasma cutting technology can do more intricate cuts and is more affordable than a laser cutting system

Oxyfuel Cutting 

This thermal separation method comprises the chemical reaction between oxygen and steel, which form iron oxide. The high-powered oxygen flame reacts with steel, causing it to disintegrate (or rust) rapidly. This method is ideal for cutting thick metal.

Laser Beam Cutting

A laser generates the machine’s resonator cavity, directed towards a tip, and then cuts through or engraves metal. This method uses a focused beam of laser light to cut through metal or other materials. This focused laser beam allows for a high degree of accuracy and precision. The laser beam melts, burns, or vaporizes the materials it contacts.

Plasma Cutting

An ionized gas stream is sparked by electricity, creating a plasma tip that can melt through any conductive metal. The method developed in the 1950s manipulates materials and cannot but cut by flame. It is an ideal method for fast and efficient cutting.

Metalworkers also use plasma cutting for cutting thin or thick metals up to 180mm because it has a high degree of accuracy. The cut’s precision and the clean edge are impacted by the gas used in the plasma cutter. The versatility of use is increased by combining different gases or water injection methods to produce different finishes of cuts or kerfs. The process makes plasma cutting metals a trusted method for metalworkers.


Pros & Cons Of Plasma Cutting Metals

There are many reasons why plasma cutting materials would greatly benefit the user. It is very user-friendly, cleaner, and safer than the oxyfuel style of thermal cutters.

Pros Of Plasma Cutting Metals

  • Fast cutting speed
  • No handling of explosive gasses
  • Less clean up
  • Ideal for cutting shaped or curved metals
  • Cuts through any conductive metal
  • Precision cutting
  • No metal chips produced from cutting
  • Smaller handheld devices are easily portable
  • It cuts thicker metal than laser cutting machines

Cons Of Plasma Cutting Metals

  • High power consumption
  • Only able to make cuts up to 180mm
  • Pricier than oxyacetylene cutting systems
  • Cuts are not as refined as laser cutting methods

Plasma cutting technology continues to be developed, making this tool more accessible and portable. While it has a higher upfront cost than oxyfuel torches, it does not require the storage and replenishment of explosive gases, making up for costs over time.


This tool’s versatility makes it a favorite amongst metalworkers of all backgrounds, from artists to manufacturers. We are proud to continue growing and innovating within the OEM industry with plasma cutting metals. Contact Glenn Metalcraft, Inc about your OEM project today.


The Differences Between Welding And Metal Fabrication

From the cars we drive to the tall buildings we work at all day to the industrial plants that produce everything we use, today’s society owes its infrastructure to metal’s strength and durability. Extreme amounts of heat and pressure and skilled labor give the metal its final form. Two of the most crucial metalworking processes are welding and metal fabrication. Many people don’t understand the distinctions between these two processes. Let’s delve into some of the differences between welding and metal fabrication in today’s blog.

In the meantime, if you have a metalworking project that you need help with, contact us. Glenn Metalcraft’s customer relationships are as solid as the metals we work with, forged on quality service for the highest quality parts.

GMI is an extension of each of our customers. We strive to grow in the right direction, so we are prudent about the work we accept and aim to achieve a good fit above everything.


Welding, Defined

Welding is the process of joining pieces of metal together using fusion. These material pieces must have similar melting points for the welding to be successful at holding them together.

Welders often work with hot metal, specialty tools, and heavy machinery. Therefore, it’s imperative to be trained in proper safety guidelines and use the correct safety equipment to prevent injuring themselves or others.

Welders should always have access to:

  • an auto-darkening welding helmet
  • coveralls or a leather apron
  • flame-resistant clothing
  • hearing protection
  • heavy work boots
  • safety goggles
  • welding gloves
  • and often a method for fume extraction equipment.

Workers must understand the importance of safety equipment, meaning the shop should have safety policies defined and communicated to their welders. Both the provision of equipment and the proper training in safety expectations are necessary for a metal fabrication shop to have a thriving safety culture and environment. This safety culture is part of the shop’s overall program of quality control.

Welding involves the fusing of two (or more) pieces of metal. Numerous welding techniques exist, and each has its particular strengths and weaknesses.

Standard welding techniques include:

  • Shielded metal arc welding.
  • Gas metal arc welding.
  • Gas tungsten arc welding.
  • Flux core arc welding.

All welding techniques have the same goal: to permanently bond metal pieces together.


Metal Fabrication, Explained

Metal fabrication is the process of bringing together metal parts and assembling, or fabricating, something out of the elements. Usually, the process creates metal structures, machines, buildings, or other components.

Metal fabrication is the entire process of creating metal parts, from beginning to end. In comparison, welding is only one part of the fabrication process, which involves using heat to join two metal pieces.

Metal gives structural strength and efficiency. For instance, metal is strong and extends the life of structures. However, despite its strength, it can be manipulated to take on a new shape. Besides, due to its strength, it is incredibly cost-efficient. Metal fabricators can replicate the procedure to create a product, which brings down the cost per unit.

Also, metal is cost-efficient for the owners. Buildings or structures that utilize the fabrication process have a lower risk of fire damage, peeling paint, and even attract fewer pests. Best of all, its resistance to damage means there are lower insurance rates.

Processes Used In Metal Fabrication

  • Casting. The casting process occurs when molten metal is poured into a mold and is left to solidify into a specific form. Casting is one of the most flexible metal fabrication methods. It’s ideal for a wide range of complex shape-making. The most common materials used in casting include copper, gold, iron, magnesium, silver, and steel.
  • Cutting. Perhaps the most common metal fabrication processes involve cutting, where sheets split into halves, thirds, or smaller. Welders perform cutting on a range of machines, from lasers and plasma torches to elaborate high-tech machinery pieces.
  • Folding. One of the more complicated metal fabrication processes involves folding, where a metal surface is manipulated to shape at a certain angle.
  • Machining. When a machine removes portions from a metal piece, the process is known as machining. The method uses a lathe, which will rotate the metal piece against tools that trim corners and edges, cutting the section down to a desired shape or measurement.
  • Punching. When holes are formed in metal, the process involved consists of punching. Punching is when a metal piece is placed under a die and submitted to a drill “punch-through.” For the punched hole to be the correct size, the drill’s circumference must be accurate.
  • Shearing. For long cuts, the process is known as shearing. Shearing can be done horizontally, vertically, or by lowering the blade like a paper cutter. Shearing is used to trim down the edge of sheet metal, but the shearing process may be done anywhere on the metal piece.
  • Stamping. The metal fabrication process of stamping creates specific shapes, letters, or images within a metal piece. In effect, metal stamping is similar to a relief carving in wood or marble. Coins are a primary example of metal stamping: with words, currency amounts, and presidents’ faces stamped on each side on pennies, nickels, dimes, and quarters.
  • Welding. Welding is easily one of the most popular metal fabrication processes among enthusiasts, along with cutting.

Additional metal fabrication processes include broaching, grinding, honing, and milling. Depending on the needs of a particular metal fabrication application, some metal facilities even perform specially customized fabrication types.


Differences Between Welding And Metal Fabrication

Welding is a metal forming technique necessary in many metal fabrication applications to complete work on a specific part or project.

Not all metal fabrication involves welding, but good welders are essential for a successful metal fabrication business to operate to its greatest potential.

Both welding and metal fabrication uses similar processes like assembling and bending. Many welders can fabricate, and many fabricators can also weld.

Metal Fabrication Encompasses Many Different Techniques

Metal fabrication encompasses the creation of a metal product from beginning to end. It involves everything from layout and design to shaping and finishing. In contrast, welding is simply one activity during metal fabrication.

As we stated above, all welding techniques have the same goal: to permanently bond metal pieces together. Metal fabrication, by comparison, encompasses many different metalworking strategies — welding included.

Welding and Metal Fabrication Use Different Tools

There are various tools used during welding and metal fabrication. Typically, professional welders need equipment such as abrasives, chipping hammers, electrode holders, soapstone, vice grips, vices, and welding clamps.

Metal fabricators, by trade, concern themselves with metal cutting, machining, or bending.

Fabricators accomplish this task using various cutting machines. A fabricator uses a lathe to remove portions of the metal. They can also create holes through which bolts will be able to pass. Bending machines then add necessary angles to the metal piece.

Welding utilizes a diverse toolset, including welding clamps, torches, power sources, and consumable electrodes.

Welding and Metal Fabrication Require Different Skills

Metal fabrication uses various metalworking processes — welding included — to create the structures and components necessary for the modern world to exist.

Most fabrication tools have a tabletop nature. Fabricators place the metal on the relevant device and then carefully manipulate the tool to accomplish the desired task.

On the other hand, welding has a vastly different strategy. While some welders do require stationary tools, welders mainly perform the welding process itself by hand.

While some metal fabricators also possess welding ability, the welding process’s complexity often requires more specialized practitioners. Without intense practice, a welder wouldn’t be able to create strong, neat welds. When creating high-performance metal products, only a welder with experience can operate with the necessary degree of skill and precision.

Why Trust Your Metal Manufacturing To Glenn Metalcraft?

Glenn Metalcraft’s customer relationships are as solid as the metals we work with, forged on quality service for the highest quality parts.

GMI is an extension of each of our customers. We strive to grow in the right direction, so we are prudent about the work we accept and aim to achieve a good fit above everything. Contact us about your project today.

Subtractive Manufacturing

Subtractive Manufacturing : Answering Some FAQs

Simply put… Additive manufacturing adds material, and subtractive manufacturing takes it away. Both are used for prototyping and are practical for large-scale production. These processes have different fundamentals but are beneficial in conjunction with one another.

If you have questions about subtractive manufacturing options, consider Glenn Metalcraft Inc for guidance. We are experts in robotic welding, punching, automated machining, and waterjet cutting. Our engineers are available to support you through product manufacturing.

Today, we’re going to answer some FAQs about subtractive manufacturing.

What Is Subtractive Manufacturing?

A good analogy for subtractive manufacturing is a sculptor making a statue. Sculptors start with a big block of stone or wood and gradually chisel away at it. Eventually, they have a finished sculpture.


Subtractive manufacturing is an umbrella term for machining and material removal processes. The process starts with solid blocks, bars, rods of plastic, metal, or other materials.

The “subtraction” takes shape by removing material through cutting, boring, drilling, and grinding. It involves cutting, hollowing, or taking parts out of a block or sheet of a material, such as a metal.

Subtractive manufacturing is performed manually or by computer numerical control (CNC).

With CNC versions of subtractive manufacturing, a virtual model designed in CAD software serves as input for the tool. Software plans are combined with user input to generate paths to guide the cutting tool through the part geometry.

These plans tell the machine how to make necessary cuts, channels, holes, and any other features that require material removal. They take into account the speed of the cutting tool and the material’s feed rate. CNC manufacturing tools produce parts based on this computer-aided manufacturing (CAM) data, with little or no human assistance or interaction.

Subtractive manufacturing creates 3D objects by successively cutting small pieces of material away from a solid block of material.

Subtractive manufacturing helps create metal parts for prototyping, manufacturing tooling, and end-use parts. These processes are ideal for applications that require tight tolerances and geometries that are difficult to mold, cast or produce with traditional manufacturing methods.

Subtractive manufacturing offers a wide variety of material and processing methods. Softer materials are, of course, much easier to cut to their desired shape but will wear out more quickly.

What Are The “Pros” Of Subtractive Manufacturing?

CNC machining can produce more substantial parts with better tolerance and smoother finishes than additive manufacturing techniques. This is especially true of intricate features such as threaded holes. Additionally, extremely durable metal parts are produced using CNC machining.


What Are The “Cons” Of Subtractive Manufacturing?

CNC machining can require substantial set-up time. For this reason, subtractive manufacturing may be too expensive for anything but high quantities of parts.

What Is The Difference Between Additive & Subtractive Manufacturing?

Since we defined subtractive manufacturing above, let’s look quickly at additive manufacturing before comparing the two.

Additive manufacturing is synonymous with 3D printing or any process by which 3D objects; built by adding material, layer by layer. Modern 3D printing has always been beneficial for rapid prototype development, but it is starting to impact the manufacturing world.

So with additive manufacturing processes, adding material, layer by layer, and subtractive manufacturing conversely removes material to create parts. While these approaches are fundamentally different, subtractive and additive manufacturing processes are often used side-by-side due to their overlapping range of applications.

Is It Always A Choice – Subtractive vs. Additive Manufacturing?

While there are fundamental differences, subtractive and additive manufacturing are not mutually exclusive. The two are often used side-by-side or at different product development stages in manufacturing.

For example, the prototyping process often utilizes both additive and subtractive techniques.

Additive technologies are typically better suited for small pieces and highly intricate or complex designs.

In later stages of the development process, when larger batches are required, subtractive processes become more competitive.

Larger, less complicated manufacturing pieces lend themselves to subtractive manufacturing. Due to the myriad of choices in surface finishes and the speed of the process, subtractive manufacturing is often the choice for fabricating finished parts. As metal 3D printed components can be cost-prohibitive, subtractive processes are a better choice for metal parts for all but the most intricate creations.

In today’s manufacturing world, subtractive and additive processes often complement each other in tooling, jigs, fixtures, brackets, molds, and patterns. Manufacturers often opt for subtractive metal processes for higher volumes or pieces subject to more extreme mechanical strain and stress.

It is utilizing additive and subtractive manufacturing in tandem in a hybrid approach that is key. The process allows product designers and today’s manufacturers to combine the versatility and quick turnaround times of additive manufacturing with the strength of subtractively-produced parts.


What Are Some Subtractive Manufacturing Techniques?

  • CNC machining. This broad term refers to turning, drilling, boring, milling, reaming. It’s ideal for hard thermoplastics, thermoset plastics, soft metals, and hard metals (industrial machines).
  • Electrical discharge machining (EDM). This subtractive manufacturing process is ideal for hard metals.
  • Laser cutting. Laser cutting is ideal for thermoplastics, wood, acrylic, fabrics, and metal (like industrial machines).
  • Waterjet cutting. With or without abrasives, waterjets can cut almost any materials, including plastics, hard and soft metals, stone, glass, composites, and even food!

What Are Your Takeaways About Subtractive Manufacturing?

Here are the key points our FAQs went over. Subtractive manufacturing:

  • Removes materials from an object.
  • Can be done manually or by a CNC machine (computer numerical control).
  • Uses computers to aid machine processes, such as drilling or milling.
  • Is ideal for bigger parts and metal parts.
  • Can be a relatively fast set-up process.

GMI crafts the highest quality parts that others say are too complicated or too difficult. Our expert craftsmen and their equipment work within tight timelines and tolerances to meet customers’ specifications. We handle robotic welding, punching, automated machining, and waterjet cutting. Contact us for information about our subtractive manufacturing options.

Laser Cutting

Introduction to Laser Cutting for Heavy Metals

Many industries use lasers for many different purposes. Today, we’re focusing on using a laser cutting machine on heavy metals.

On metals such as aluminum plates, stainless steel, and steel, the laser cutting process is highly accurate. Laser cutting machines yield excellent cut quality, have a very small kerf width, and smaller heat-affected zones, making it possible to cut very intricate shapes and small holes.

What is “laser cutting?” Laser cutting is used for various metal and non-metal materials, including plastic, wood, gemstone, glass, and paper. The word “LASER” is an acronym for Light Amplification by Stimulated Emission of Radiation.

What most don’t know – or understand – is how light can cut through metal. We’ll answer a few of our most asked questions today!

Glenn Metalcraft Inc. (GMI) continually improves, adds, and upgrades its equipment, including our laser cutting machine, to expand our offerings to customers. Contact us for information about our laser cutting for heavy metals.


How Does Laser Cutting Metal Work?

Laser cutting machines are part of a non-contact, thermal-based fabrication process suitable for metal and non-metal materials.

Laser cutting employs an extremely-focused, high-powered laser beam to cut the material into intricate shapes or designs. This process is suitable for an extensive range of materials, including metals, plastics, woods, gemstones, glass, and paper. It produces intricate, precise, and complex pieces, mostly without custom-designed finishing or tooling.

Laser cutting machines can produce parts with accuracy, precision, and high-quality edge finishes. They do so (generally) with less material contamination, physical damage, and waste than with other conventional cutting processes, such as mechanical cutting.

While laser cutting machines demonstrate advantages over conventional cutting processes, some industrial or manufacturing applications can be somewhat problematic, such as cutting reflective material or any pieces requiring custom finishing or machining work.

On a CNC laser cutting machine, the laser cutting head is moved over the metal plate or piece in the desired part’s shape, thus cutting the design out of the metal. In a laser cutting machine, a capacitive height control system maintains a very accurate distance between the end of the laser’s nozzle and the metal piece.

This exact distance is important when figuring out how a laser cutting machine works. It determines where the focal point exists, relative to the metal’s surface.

A laser cut’s quality can be affected by raising or lowering the focal point from just above the metal’s surface, at the surface, or just below the surface.

With parameters controlled properly, laser cutting is a stable, reliable, and very accurate cutting process.


What Materials Can Be Cut With A Laser Cutting Machine?

A laser cutting machine is wonderful at cutting many different materials.

This list of choice materials includes:

  • Wood
  • Gemstones, such as diamonds
  • Titanium, stainless steel, steel, aluminum, and a range of others
  • Reflective metals, such as silver, copper, and aluminum
  • Glass
  • Plastic, silicon, and other non-metallic materials

Whatever the metal is you work with and whatever the industrial or manufacturing application, a laser cutting machine will be up for the task.

Can A Laser Really Cut Through Metal?

Short answer: Absolutely!

Industrial laser cutting machines can cut most metals. Laser cutters and plasma cutters are often used for this purpose.

Lasers capable of cutting through the thickest, even steel, plates are high-powered CO2 lasers. Metals such as stainless steel and aluminum can be cut with a laser when using compressed gas technology.

What Are The Benefits Of Laser Cutting?

Compared to other types of traditional industrial cutting methods, laser cutting offers several advantages.

These advantages include:

Greater precision and accuracy

Laser cutting machines cut a wide range of patterns and designs with increased precision compared to traditional metal cutting methods. Since laser cutting machines can be CNC-controlled, they can repeatedly produce complex and intricate parts to high tolerances. Thanks to this precision, slits with a width as small as 0.1mm can be achieved.

Higher quality cuts and edges

Laser cutting produces extremely high-quality cuts and edges on its pieces. These generally do not require further cleaning, treating, or finishing, decreasing the need for additional finishing processes.

Narrower kerf widths and less material distortion

The focused laser beam allows for narrower kerf widths, and the localized heating allows for minimal thermal input to the metal piece.

The smaller kerf widths minimize the amount of wasted material removed.

The low thermal input minimizes the heat-affected zones (HAZs). This, in turn, decreases the extent of thermal distortion.

The non-contact nature of laser cutting machines also decreases the risk of mechanical (or thermal) distortion, especially for thin or very flexible or thin materials, and reduces the risk of material contamination.

Less material contamination and waste

Owing to the smaller heat-affected zones, tighter tolerances, narrower kerf widths, and lesser degrees of material distortion, the operator can arrange the laser-cut pieces closely on the metal. This closeness reduces the amount of material wastage, leading to lower material costs over time.

Greater operator safety and quieter operating

Other advantages of laser cutting machines include a massively decreased risk of operator injury and much quieter operations.

The entire laser cutting process uses little to no mechanical components and occurs within its enclosure, resulting in less operator injury risk. The operator also has total control with the beam intensity, heat output, and duration when undertaking a laser cutting process, making this a highly reliable and safe operation.

As there is less noise produced by laser cutting machines, noise pollution lessens, and the overall workplace environment is also improved.


What Industries Come To GMI For Laser Cutting Heavy Metals?

Many industries take advantage of our laser cutting services for their metal projects.

These industries include:

  • Automotive (including e-mobility),
  • Aerospace,
  • Electronics,
  • Semiconductor, and
  • Medical.

Glenn Metalcraft Inc. (GMI) continually improves, adds, and upgrades its equipment, including our laser cutting machine, to expand our offerings to customers. Contact us for information about our laser cutting for heavy metals.