Categories
Welding

What Is a Weldment Fabrication?

Have you ever sought a one-stop metal fabrication shop that offers machining, heavy metal spinning, cutting, welding, fabrication, and finishing services but didn’t know where to look? You’re in the right place. 

Among the wide-ranging metal manufacturing techniques and disciplines is a service referred to as weldment fabrication. Keep reading to find out:

  • What weldment fabrication is
  • Different metal fabrication processes
  • Various types of welding in metal manufacturing
  • List of industries that commonly use welding in their fabrication process

Contact Glenn Metalcraft if you need weldment fabrication services.

What Is Weldment Fabrication?

 

In metal production, welding is the process that applies heat to metal parts and then uses a filler to form a joint. Weldment fabrication is joining two or more metal pieces into one cohesive piece. Having an adequately tested design prototype helps determine the kind of weldment required.

The performance of a welded structure is tested by checking and correcting common faults, such as:

  • Improper metal fusion
  • Porosity in the weld metal
  • Undercutting on the base metal

Typical Metal Fabrication ProcessesAdobeStock 83134625

Raw metal passes through a few operations before the final product is client-ready. For example, before an automobile frame reaches the assembly plant, it typically goes through some, if not all, of the following metal fabrication processes:

  • Cutting freshly-made pieces of metal or pre-shaped bars into desired sections using such items as high-tech laser cutting machinery or plasma torches.
  • Folding sheet metal using a press brake or an auto-robotic bending machine that manipulates it into specific angles for the desired shape.
  • Welding is a process that uses heat application to join metals and separate pieces of sheets or panels.
  • Punching involves sandwiching sheet metal between a die and punch-through to create customized contour shapes or holes, sometimes using a process referred to as nibbling.
  • Shearing utilizes a blade controlled by a squaring arm to create precision cuts on metal materials like iron, steel, aluminum, copper, and bronze.
  • Stamping fabrication uses a die to form intricate shapes, images, or letters on a metal panel, as seen in coins.
  • Casting is where molten metal such as gold, silver, steel, or iron is poured into a pre-formed mold and allowed to solidify into a specified form.

Some fabrication facilities may offer specialized metal finishing services, including blackening, cladding, grinding, plating, and powder coating. They are often the last machining operations based on aesthetics.

Commonly Used Welding Methods in Metal Manufacturing

Welding involves a few moving parts to ensure the longevity, integrity, and aesthetics of a weldment centered on industry codes and standards. Depending on the project, some welding facilities apply high-tech lasers, electromagnets, and microwaves. They may also use a simple torch or forge method.

Although there are numerous welding methods, the four most common include:

  • MIG Gas Metal Arc Welding (GMAW) – utilizes an electric arc to heat metals such as carbon steel, stainless steel, aluminum, and copper to their melting point to form a permanent bond. MIG welding is employed in automobiles’ manufacture, repair, and maintenance.
  • TIG Gas Tungsten Arc Welding (GTAW) – uses a consumable tungsten electrode, a rigid metal material that doesn’t burn off or dissolve. Because welding TIG also utilizes helium or argon as an external gas supply, it’s primarily applied in the aerospace and automobile industries.
  • Stick Shielded Metal Arc Welding (SMAW) – uses a protected welding electrode covered with a thick coating of flux that burns while creating a protective cover between metal pieces. Stick welding is ideal for creating hard surfaces on farm equipment.
  • Flux-Cored Arc Welding (FCAW) – combines a base metal power supply and a continuous hollow flux-filled electrode fed through a welding gun into a weld pool. Given that this type of welding provides exceptional penetration, it’s applied in industrial machining to thick weld steel.welding iron spark fire hot steel with power GMAW welder

Industries That Commonly Use Welding in Their Fabrication Process

Below is a list of industries that rely on welding for their fabrication process:

  • The automotive industry turns to MIG welding to manufacture, assemble, and repair all types of vehicles.
  • Aerospace depends on laser MIG, plasma arc, or electronic welding for manufacturing aircraft and performing precision work during the repair and maintenance of all flying crafts.
  • Infrastructure and construction use plasma arc, shielded, and flux-cored welding for building roads and bridges, including commercial and residential properties.
  • The shipping and railroad industry employs electric arc, gas pressure, and thermite welding processes in constructing, repairing, and maintaining cruise liners, ships, railroad tracks, etc.
  • Manufacturing is another industry that utilizes MIG as a standard welding process to produce computer components, furniture, mining machinery, and agricultural tools.

Final Thoughts

With raw material versatility and the assurance of strength and permanence, welding provides numerous benefits that outweigh other methods for joining or fastening disparate elements.

As you search for metal services minus the inflated costs of doing business with several establishments, consider a one-stop shop like Glenn Metalcraft. We are a full-service shop where you can leverage multiple metal manufacturing solutions under one roof to ensure precision, high quality, and value at competitive rates.

Contact our expert team to ensure your fabrication and welding project is completed according to your standards and specifications.

Categories
Laser Cutting

Fixes for Common Problems With Stainless Steel Laser Cutting

Laser cutting machines have come a long way since they first became available for commercial use. The current ones can easily adjust their operating parameters and cut through medium and thick plates of steel alloys like carbon steel. Even then, it’s not a guarantee that the laser will do a good job. 

Let’s take a look at some of these problems and their solutions. When you need help with your laser cutting or other metal fabrication projects, contact the experienced team, ready to help, at Glenn Metalcraft

stainless steel laser cutting control station buttons

Unfamiliarity With Cutting Parameters

Laser cutting is markedly different from plasma cutting. Five factors determine how the machine will cut the stainless steel for sheet metal fabrication. They include:

  • Beam focus
  • Beam power
  • Gas feed rate
  • Gas pressure
  • Nozzle alignment

Modern machines are advanced enough to control the laser beam characteristics. The beam focus and power are crucial for cutting different types of steel alloys with diverse strengths, thicknesses, and grades.

The operating technicians will need to check on the other parameters, depending on the laser used. These include the centering of the nozzle, beam delivery system, and alignment. 

Getting a good cut implies taking into context all the factors and adjusting them according to the material you are attempting to cut. While imperfections during steel fabrication are normal, it doesn’t mean you should tolerate them. Instead, familiarize yourself with the cutting parameters. 

Being oblivious of these cutting parameters produces sheet metal with imperfections that could become costly. 

Problems Brought About by Mixed Characteristics

While getting the right mix to these parameters is not exactly a science, they have to be in the right proportions; otherwise, various issues will arise. Stainless steel laser cutting is all about striking the right balance between the material heated by the laser beam and the gas flowing through the cut. 

If not done right, the following common issues may appear.

stainless steel laser cutting closeup

Large Heat Affected Zones

Cutting metal requires energy, which converts to heat during the cutting process. By using a laser beam, heat is the medium for cutting steel. Since steel is a good heat conductor, the heat transmits away from the point of contact between the laser and the metal. 

A zone forms between the melted metal and the unaffected one during the process. In this area, the microstructure and metal strength are compromised. A large heat-affected zone (HAZ) signifies having a large area of potential weakness. 

While laser cutting has the smallest heat-affected zone of all methods used to cut steel, it doesn’t eliminate the problem. The adequate gas flow between the cut and additional cooling can help reduce the formation of an HAZ.

Striation

Striations are periodic lines that pop up on the surface of a cut in waves. They are undesirable as they affect the final products‘ appearance, surface roughness, and precision. The formation of striations results from the melting and cooling process when the type of gas can influence the cutting method in use. 

It’s impossible to get rid of striations, but decreasing them to a minimal size is possible. You can reduce striations by having a moderately adequate cutting speed. The minor temperature variation provides an almost even heating and melting phase.

Burr Formation

Burrs are created as a laser cuts through the metal by melting the portion it is going over. The gas then pushes the molten metal from between the kerf, solidifying it under the sheet metal. 

Burr formation is impacted by several things, including the sheet metal’s thickness and the type of gas employed. If using nitrogen, the beam is solely responsible for all the energy to melt the metal. Instead of utilizing oxygen, the gas interacts with the heated metal, resulting in an exothermic reaction. This brings about more heat, adding to burr formation.

Though melting the metal is the mechanism for cutting it, regulating the gas pressure is vital to ensuring a high-quality cut. Excess gas pressure is responsible for burr formation and the reason why when using oxygen, gas pressure is lower. 

oxygen pressure gauge regulator monitor for laser cutting machine

Considerations When Using Oxygen 

You have to consider several things if you decide to cut carbon steel using oxygen. This is because oxygen results in an exothermic reaction, and the purity level becomes an influencing factor. Purity above 99.95% indicates that you can significantly increase cutting speed and improve production statistics.

The problem comes in when the purity drops, mostly when changing cylinders or switching to one with impurities such as Argon. When you introduce the new gas to the process, you have to change the controlled exothermic process, and the outcome is a reduction in cutting performance. 

Looking For Innovative Solutions To Your Manufacturing Problems?

Then you’ve come to the right place. At Glenn Metalcraft, we specialize in precision metal works such as heavy gauge metal spinning, laser cutting, and plasma cutting. Request an estimate and see how we can partner to solve your metal fabrication problems.