Laser Cutting

A Guide for Choosing Laser, Water, or Plasma for Your Next Metal Cutting Project

Before you can begin to think about your latest metal project, your primary focus of attention may be on which way to cut the metal parts from the sheets of metal stock you have chosen for this metal cutting project.

In this post, let’s examine laser, waterjet, or plasma arc cutting as your choices at hand. Then let’s further enhance your metal-cutting project by putting you in touch with a metal-cutting project leader at Glenn Metalcraft, your one-stop metal-cutting project service provider.

Laser Cutting for Your Metal Cutting Project

Let’s take a look at what laser cutting consists of to gain a better understanding. First, LASER is an acronym for Light Amplification by Stimulated Emission of Radiation. When you laser cut the pieces for your metal cutting project, you use a thermal-based fabrication method to cut, etch, and otherwise prepare the needed components for your metal cutting project.

That might be a bit of a mouth full, but in short, the produced laser beam in our shop is guided through CNC equipment, focused through various optics, and then used to slice through the sheets of metal stock, producing your needed metal parts and pieces.

Ideal Metals to Cut With Laser Cutting

Some metals have characteristics such as being light-reflective or extremely heat conductive. Copper and aluminum are examples of such metals and require cutting from sources other than lasers. Brass, steel, nickel, and tungsten are ideal for laser-cutting technology.

Pros of Laser Cutting

  • High precision: Laser cutting machines can cut metal parts with a high degree of precision, resulting in clean edges and minimal distortion.
  • Fast cutting speeds: Lasers can cut metal quickly, making them an efficient choice for high-volume production runs.
  • Versatility: Laser cutting can be used on a wide range of metal materials, including steel, aluminum, and titanium.

Cons of Laser Cutting

As with any thermal process, laser cutting can come with its own set of drawbacks, such as;

  • Limited thickness capacity: Laser cutting is not effective for cutting metal thicker than about 1 inch.
  • Heat-affected zone: Laser cutting generates heat which can affect the properties of the metal, such as changing the hardness or temper.
  • Warping or deformation: Laser cutting can cause warping or deformation of the metal, especially in thicker or more heat-sensitive materials. 

Waterjet Cutting for Your Metal Cutting Project

Waterjet Cutting Machine for metal cutting project

Waterjet cutting technology is a bit easier to explain than laser-cutting technology. In waterjet cutting, water is directed at a very high velocity through specialized jets to produce an effective and clean cut of your metal sheet stock. Sometimes, an abrasive substance is added to the water for use on types of harder alloys to enhance its cutting ability.

Similar to how water eroded and created the Grand Canyon over centuries, waterjet cutting employs the same technique but on a smaller and much more accelerated scale. Utilizing a high-pressure pump, waterjet cutting creates a fluid stream of up to 94,000 PSI. In perspective, a waterjet cutter is 80 times more powerful than a fire hose!

Ideal Metals to Cut With Waterjet Cutting

Without any added abrasive, waterjet cutting alone is ideal for softer materials like plastics, cement boards, and foam. To get the desired results from waterjet cutting for your metal cutting project, a special jeweled orifice is used in conjunction with garnet abrasives that exit the nozzle up to four times faster than the speed of sound. This allows metal materials up to one foot in thickness to be cut.

Pros of Waterjet Cutting

  • This is a cold-cutting method that produces ZERO heat-affected zones.
  • Omni-directional flexibility. You can cut in any direction, not just straight down.
  • Cutting so precisely with water is possible that no secondary finishing is required.
  • This process is safe and environmentally friendly.

Waterjet cutting is ideal for cutting, shaping, and reaming metal parts for aerospace and mining applications.

Cons of Waterjet Cutting

  • It may not be suitable for cutting materials thicker than about 6 inches.
  • Although extremely precise, waterjet cutting does not match the tight tolerances that some other cutting methods, such as laser cutting, can achieve.
  • Some materials, such as tempered or heat-treated steels, can be difficult or impossible to cut with a waterjet due to their hardness or the heat-affected zone created by previously employed cutting processes on the same piece.

Plasma Cutting for Your Metal Cutting Project

Plasmacutting at Work

So far, we have used amplified light sources and high-pressure water to cut the pieces of your metal cutting project. Now it’s going to get a bit more scientifically advanced. We all know the three states of matter, solid, liquid, and gas. Basic middle school science, right?

Plasma is sometimes referred to as the fourth state of matter. When certain gasses are superheated, they become ionized. This makes the gas electrically conductive by turning the gas into plasma. 

Plasma cutters can use oxygen, nitrogen, argon, or even compressed air as their gas to heat via an arc produced by the cutting machine. As the gas and arc combine at the orifice point, all is converted to plasma. 

Ideal Metals to Cut With Plasma Cutting

Any metal that is a good conductor of electricity is ideal for a plasma cutter.

Those metals are;

  • Aluminum
  • Brass
  • Carbon steel
  • Copper
  • Mild Steel
  • Stainless Steel
  • Expanded Steel

Sheet metal 1-2 mm and up to 1-2 inches thick are also ideal.

Now the Pros and Cons of plasma cutting.

Pros of Plasma Cutting

  • Plasma cutting is a fast cutting method that can be used to quickly and efficiently cut a wide range of materials.
  • It can provide high cutting accuracy from metal to non-metals.
  • It is a versatile cutting method and can be applied to a wide range of industries.

Cons of Plasma Cutting

  • Plasma cutting is less precise than other cutting methods, such as laser cutting or waterjet cutting, and may not be suitable for projects that require tight tolerances.
  • The intense heat generated by plasma cutting can cause warping or distortion in some materials, particularly thin or delicate materials.
  • Plasma cutting is typically limited to cutting materials no thicker than 1-2 inches, depending on the specific equipment and settings used.

The Next Level in Your Metal Cutting Project

Now that you have seen the differences between laser, waterjet, and plasma cutting and the pros and cons of each, let’s take your metal cutting project to the next level!

That being said, contact your one-stop shop for all your metal cutting project needs – Glenn Metalcraft.

Laser Cutting

Fixes for Common Problems With Stainless Steel Laser Cutting

Laser cutting machines have come a long way since they first became available for commercial use. The current ones can easily adjust their operating parameters and cut through medium and thick plates of steel alloys like carbon steel. Even then, it’s not a guarantee that the laser will do a good job. 

Let’s take a look at some of these problems and their solutions. When you need help with your laser cutting or other metal fabrication projects, contact the experienced team, ready to help, at Glenn Metalcraft

stainless steel laser cutting control station buttons

Unfamiliarity With Cutting Parameters

Laser cutting is markedly different from plasma cutting. Five factors determine how the machine will cut the stainless steel for sheet metal fabrication. They include:

  • Beam focus
  • Beam power
  • Gas feed rate
  • Gas pressure
  • Nozzle alignment

Modern machines are advanced enough to control the laser beam characteristics. The beam focus and power are crucial for cutting different types of steel alloys with diverse strengths, thicknesses, and grades.

The operating technicians will need to check on the other parameters, depending on the laser used. These include the centering of the nozzle, beam delivery system, and alignment. 

Getting a good cut implies taking into context all the factors and adjusting them according to the material you are attempting to cut. While imperfections during steel fabrication are normal, it doesn’t mean you should tolerate them. Instead, familiarize yourself with the cutting parameters. 

Being oblivious of these cutting parameters produces sheet metal with imperfections that could become costly. 

Problems Brought About by Mixed Characteristics

While getting the right mix to these parameters is not exactly a science, they have to be in the right proportions; otherwise, various issues will arise. Stainless steel laser cutting is all about striking the right balance between the material heated by the laser beam and the gas flowing through the cut. 

If not done right, the following common issues may appear.

stainless steel laser cutting closeup

Large Heat Affected Zones

Cutting metal requires energy, which converts to heat during the cutting process. By using a laser beam, heat is the medium for cutting steel. Since steel is a good heat conductor, the heat transmits away from the point of contact between the laser and the metal. 

A zone forms between the melted metal and the unaffected one during the process. In this area, the microstructure and metal strength are compromised. A large heat-affected zone (HAZ) signifies having a large area of potential weakness. 

While laser cutting has the smallest heat-affected zone of all methods used to cut steel, it doesn’t eliminate the problem. The adequate gas flow between the cut and additional cooling can help reduce the formation of an HAZ.


Striations are periodic lines that pop up on the surface of a cut in waves. They are undesirable as they affect the final products‘ appearance, surface roughness, and precision. The formation of striations results from the melting and cooling process when the type of gas can influence the cutting method in use. 

It’s impossible to get rid of striations, but decreasing them to a minimal size is possible. You can reduce striations by having a moderately adequate cutting speed. The minor temperature variation provides an almost even heating and melting phase.

Burr Formation

Burrs are created as a laser cuts through the metal by melting the portion it is going over. The gas then pushes the molten metal from between the kerf, solidifying it under the sheet metal. 

Burr formation is impacted by several things, including the sheet metal’s thickness and the type of gas employed. If using nitrogen, the beam is solely responsible for all the energy to melt the metal. Instead of utilizing oxygen, the gas interacts with the heated metal, resulting in an exothermic reaction. This brings about more heat, adding to burr formation.

Though melting the metal is the mechanism for cutting it, regulating the gas pressure is vital to ensuring a high-quality cut. Excess gas pressure is responsible for burr formation and the reason why when using oxygen, gas pressure is lower. 

oxygen pressure gauge regulator monitor for laser cutting machine

Considerations When Using Oxygen 

You have to consider several things if you decide to cut carbon steel using oxygen. This is because oxygen results in an exothermic reaction, and the purity level becomes an influencing factor. Purity above 99.95% indicates that you can significantly increase cutting speed and improve production statistics.

The problem comes in when the purity drops, mostly when changing cylinders or switching to one with impurities such as Argon. When you introduce the new gas to the process, you have to change the controlled exothermic process, and the outcome is a reduction in cutting performance. 

Looking For Innovative Solutions To Your Manufacturing Problems?

Then you’ve come to the right place. At Glenn Metalcraft, we specialize in precision metal works such as heavy gauge metal spinning, laser cutting, and plasma cutting. Request an estimate and see how we can partner to solve your metal fabrication problems. 

Laser Cutting

An Intro To Plasma Cutting Metals

There are four primary states of matter: liquid, solid, gas, and plasma. Plasma is gas that has energy added to it, causing molecules to speed up and collide with greater force into each other. This electrified, ionized gas creates the power behind plasma cutting metals and technologies.

The technology for plasma cutting metals is here to make fabrication and welding more manageable and precise than ever before.

At GMI, we have been offering our customers cutting-edge technology for fabrication and metalworking since 1947. Please contact us today to discuss how our team of engineers and craftsmen can save you time and money with our superior service.

This article will look into plasma cutting metals, a widely used process in the manufacturing industry. Let’s dig into…

The World Of Plasma Cutting Metals

Plasma cutting is a fabrication process used to cut through conductive metals like stainless steel and aluminum. We find the technology in automotive repair, manufacturing, and industrial construction. But how exactly does it work?

The process begins with a gas. The type of gas you utilize depends on the material cut, as different gasses can produce different results. Compressed air, nitrogen, oxygen, and argon-hydrogen mixtures are a few examples, but manufacturers most often use compressed air.

Next, the gas is injected into the plasma chamber, where it is electrified. This process breaks the molecules of gas into atoms. Atoms are disassociated from their electrons. The process is also known as ionization. The fast-moving ionized gas produces large amounts of heat as the electrons are displaced from the atoms and then reabsorbed by other particles.

The ionized gas is funneled towards the very narrow opening, the focused nozzle, of the cutter itself. As the pressurized, ionized gas rushes past the electrode, it is sparked by an electric arc, making the plasma electrically conductive. The nozzle focuses and constricts the plasma, giving it a higher density and velocity.

The plasma exiting the cutter’s tip and the workpiece itself create an electrical circuit. The cutter and workpiece have been grounded by an earth terminal, allowing for a completed circuit to form. The process makes it safe to use for the craftsperson.

Finally, the workpiece needs to be a conductive metal for this electrical plasma to connect and melt the metal. The plasma reaches temperatures up to 30,000 degrees Celcius, which is hot enough to initiate the melting process. It can cut through metals between .5mm and 180mm.


What Metals Are Conductive?

Plasma cutting is only useful for conductive metals. That means that the material must conduct electricity, as plasma is electrical, ionized gas.

Metals that are conductive and typically cut by plasma technology include:

  • Stainless steel
  • Steel
  • Aluminum
  • Copper
  • Brass
  • Titanium
  • Iron

Thermal Separation

There are three main thermal separation methods used in metal fabrication and welding. Lasers are potent but often cost-prohibitive. . The plasma cutting technology can do more intricate cuts and is more affordable than a laser cutting system

Oxyfuel Cutting 

This thermal separation method comprises the chemical reaction between oxygen and steel, which form iron oxide. The high-powered oxygen flame reacts with steel, causing it to disintegrate (or rust) rapidly. This method is ideal for cutting thick metal.

Laser Beam Cutting

A laser generates the machine’s resonator cavity, directed towards a tip, and then cuts through or engraves metal. This method uses a focused beam of laser light to cut through metal or other materials. This focused laser beam allows for a high degree of accuracy and precision. The laser beam melts, burns, or vaporizes the materials it contacts.

Plasma Cutting

An ionized gas stream is sparked by electricity, creating a plasma tip that can melt through any conductive metal. The method developed in the 1950s manipulates materials and cannot but cut by flame. It is an ideal method for fast and efficient cutting.

Metalworkers also use plasma cutting for cutting thin or thick metals up to 180mm because it has a high degree of accuracy. The cut’s precision and the clean edge are impacted by the gas used in the plasma cutter. The versatility of use is increased by combining different gases or water injection methods to produce different finishes of cuts or kerfs. The process makes plasma cutting metals a trusted method for metalworkers.


Pros & Cons Of Plasma Cutting Metals

There are many reasons why plasma cutting materials would greatly benefit the user. It is very user-friendly, cleaner, and safer than the oxyfuel style of thermal cutters.

Pros Of Plasma Cutting Metals

  • Fast cutting speed
  • No handling of explosive gasses
  • Less clean up
  • Ideal for cutting shaped or curved metals
  • Cuts through any conductive metal
  • Precision cutting
  • No metal chips produced from cutting
  • Smaller handheld devices are easily portable
  • It cuts thicker metal than laser cutting machines

Cons Of Plasma Cutting Metals

  • High power consumption
  • Only able to make cuts up to 180mm
  • Pricier than oxyacetylene cutting systems
  • Cuts are not as refined as laser cutting methods

Plasma cutting technology continues to be developed, making this tool more accessible and portable. While it has a higher upfront cost than oxyfuel torches, it does not require the storage and replenishment of explosive gases, making up for costs over time.


This tool’s versatility makes it a favorite amongst metalworkers of all backgrounds, from artists to manufacturers. We are proud to continue growing and innovating within the OEM industry with plasma cutting metals. Contact Glenn Metalcraft, Inc about your OEM project today.