What are the Different Types of Welding?
Since ancient Egypt, humans have welded base metal in one way, shape or form. Welding does not get the credit it deserves, but few skills human beings have created have had as much of an impact on the average person’s daily life.
Here are the major welding techniques, how they were or are used. Keep reading to learn how you can determine the types of welding processes you need for any projects you are working on.
And for a quote on welding services, contact Glenn Metalcraft today.
Welding’s Impact
Just about everywhere you look, various forms of welding affect our lives. Your vehicle, furniture, appliances, even some electronics have some form of welding (which is different from soldering.) From the early days of forge welding through today’s most computer-driven, semi-automatic, and sophisticated welding methods, welding has helped us bond metal to create things that truly enhance our lives.
Forge Welding
Forge welding was the earliest form of welding. It started with ancient Egypt and spawned blacksmithing. It involves heating two metals to the point of a molten status and then pounding them into a single metal object.
Braze Welding
This type of welding goes far back as well. Braze welding has been found in archeological sites worldwide. It was used for bonding bronze, silver, gold, and steel. This type of welding is still used today, primarily when working with softer metals that melt under lower temperatures.
Arc Welding
Arc welding is the most common form of welding and was developed in England and France in the early 1800s. It uses an electrical pulse to melt metal at extremely high temperatures and carry it across a joint via an arc to fill the arc with an incredibly strong bond.
Arc welding came into prominence during World War I and eventually became a primary bonding method in modern manufacturing. In the war (and subsequent wars,) it was a vital tool in repairing ships quickly so they could return to battle or be retrofitted with new equipment.
Arc welding has improved in equipment, safety, cost, and weld quality and is now used in several different forms for various purposes. A few of the more common methods of welding are outlined below.
Metal Inert Gas (MIG) Gas Metal Arc Welding (GMAW)
MIG welding is exceptionally simple but produces high-quality welds, and because of that, it is a favorite for many new welders. The welding process occurs by feeding wand-based filler metal into the portion of the weld that is arced, while gas expels to shield it from external elements.
It is not generally used to weld metals outside because of the need for a gas shield. It can be used, though, for many different types of thickness, making it a “go-to” for simple type welds. The wire serves as the electrode and melts when the arc travels from the tip of the wire to the base metal. This action creates a pool that hardens into a weld.
The arc process is controlled by the welder, which allows them to proceed at their own pace. When completed, a MIG weld is smooth, tight, and very linear.
Stick Welding Shielded Metal Arc Welding (SMAW)
Stick welding is the most used type of welding for non-complex projects because it is easy to learn, inexpensive, and easy to perfect. The downside to stick welding is that it splatters a lot, depending on the welder’s skill. The splatter makes cleanup afterwards nearly inevitable.
An arc from the stick to the base metal is created, and the stick serves as the filler metal. The arc will generate heat and flux, coat the stick, vaporize, and protect the metal from oxidation. It can be used outdoors and in adverse weather, including rain, ice, snow, and wind. Additionally, stick welding works on rusted, dirty, and painted surfaces.
Another upside to this welding method is that there are many electrode types, and they are easy to swap. This flexibility makes stick welding very versatile and able to work with most metals, including stainless steel. Because the process will create heat, it is not the ideal welding method for thin metals.
TIG – Gas Tungsten Arc Welding (GTAW)
This type of welding uses a tungsten electrode and requires no filler metal, meaning that you can join the two metals directly. Shielding gas is needed for this type of welding, and it protects the weld from external elements. There is no splatter, and the bond is incredibly precise.
Flux Cored Arc Welding (FCAW)
FCAW uses a wire as the electrode, which has a core of flux that creates a gas shield around the weld. FCAW is best with thicker, heavier metals, making it a favorite for repairing heavy equipment and components with large metal seams, like barges. The FCAW process is clean, does not need external gas, and is affordable.
Plasma Arc Welding
A smaller arc helps create a very precision-oriented weld with Plasma Arc Welding. This method also uses a different type of torch, which runs much hotter than a traditional torch. The torch is so hot that even base metals can melt, allowing plasma welding with no filler metal.
Plasma Arc welding creates deep weld penetration on relatively narrow weld channels. Plasma Arc Welding produces attractive welds that are exceptionally strong. It can also be accomplished at very high speeds, making it ideal for some forms of manufacturing.
Other Types of Welding
While the welding methods outlined above are the most popular, several other types of welding are also frequently used. Each of these methods are used in hybrid situations, usually in some form of manufacturing. A few include:
- Laser Beam Welding
- Electron Beam Welding
- Electroslag
- Atomic Hydrogen Welding
What are the Different Types of Welding: Final Thoughts
Generally, the two most popular types of welding, stick, and MIG (GMAW), are used because they are easy, require little specialized equipment, are inexpensive, and the weld produced is superior and great looking. They are the most popular because anyone from beginner to expert can do them with little training time.
For more information on welding, contact Glenn Metalcraft.